...
雪花模型是对星型模型的扩展,它对星型模型的维表进一步层次化,原有的各维表可能被扩展为小的事实表,形成一些局部的 "层次 " 区域,这些被分解的表都连接到主维度表而不是事实表。如将产品维表分解为产品类别维表。
相关概念
我们在Smartbi设计数据模型架构前,需要对模型设计紧密相关的概念有清晰的认识和理解:
度量值
度量值是存储要汇总的值的事实数据表列。
Smartbi数据模型中的度量值表达式通常利用 DAX 聚合函数(如 SUM、MIN、MAX、AVERAGE 等)在查询时生成标量值结果(值永远不会存储在模型中)。 度量值表达式涵盖广泛,从简单的列聚合到更复杂的公式应有尽有,这为模型开发者提供了便利,因为在很多情况下都无需创建度量值: 如“订单明细”表中的“销售量”列可以通过多种方式进行汇总(包括 SUM、COUNT、AVERAGE、MEDIAN、MIN、MAX 等),无需为每种可能存在的聚合类型创建度量值 。
雪花维度
雪花维度是单个业务实体的一组规范化表 。例如:“产品”维度经过了规范化并存储在两个相关表中:产品类别维度和产品维度。这些规范化表位于事实数据表之外,形成雪花形状的设计。
...
在选择集成到一个模型表中时,还可以定义一个层次结构,其中包含维度的最高和最低粒度。 冗余非规范化数据的存储可能会增加模型存储大小,尤其是在维度表很大的情况下。
角色扮演维度
角色扮演维度是能以不同方式筛选相关事实的维度 。 例如,在Northwind中,订单维度表与订单销售明细事实之间有三种关系:可以使用同一维度表中按订单日期、发货日期或交货日期筛选事实。
...
在Smartbi数据模型中,我们用一种常见的建模方法解决,就是为每个角色扮演实例创建维度类型表。 该模型可以包含日期表、发货日期表和交货日期表,每个表与其对应的销售表列之间都存在单一且活动的关系 。
杂项维度
如果有多个维度,特别是包含几个属性(可能只有一种)并且这些属性的值很少时,则杂项维度非常有用 。
...
杂项维度表通常是所有维度属性成员的笛卡尔积,具有唯一标识列。 可以在数据仓库中构建维度,也可以通过使用Smartbi数据模型中的私有查询创建,并此查询作为维度类型表加载到模型中。
退化维度
退化维度指的是筛选所需的事实数据表的属性 。 我们的northwind中就有一个例子,就是销售订单号。 在这种情况下,创建仅包含这一列的独立表对模型设计并没有什么积极作用,因为这会增加模型的存储大小,并导致“字段”窗格混乱 。
在Smartbi模型中,可以将销售订单号列添加到事实类型表,以允许按销售订单号进行筛选或分组。
无事实事实数据表
无事实事实数据表不包含任何度量值列 。 它仅包含维度键。
...