示例
使用“银行信用贷款预测”案例数据,共12个特征和1个二类的目标标签,需要预测是否贷款。通过数据预处理及模型训练,如下图:
其中,数据探索是为了解各变量之间的相关关系,方便之后数据分析中参数特征的设定;特征转换是为了将各变量中的类别型变量变换成数值型变量,类别型无法进入模型,转换后方便算法模型学习;特征离散是把连续特征分段,每一段内的原始连续特征无差别的看成同一个新特征,是为了提高模型的准确度,提高运行速度。
模型构建中,支持向量机的各个参数:
参数名称 | 值 | 说明 |
---|---|---|
归一化 | 正则化 | 详情请参考 归一化 介绍说明。 |
标准化 | ||
最小最大值归一化 | ||
最大绝对值归一化 | ||
最大迭代数 | 参数范围为:>=1的整数,默认值为10 | 算法的最大迭代次数,达到最大迭代次数即退出。 最大迭代次数的值越大,模型训练更充分,但会耗费更多时间。 |
正则参数 | 参数范围为:>=0的数,默认值为 :0。 | 正则项系数,损失函数中的 。 正则化可以解决模型训练中的过拟合现象; 正则项系数越大,模型越不会过拟合。 |
收敛阈值 | 参数范围为:>=0的数,默认值为 :0.000001。 | 收敛误差值。 收敛误差值,当损失函数取值优化到小于收敛阈值时停止迭代。 |
分类阈值 | 参数范围为:0~1。默认值为:0.5。 | 在二进制分类中设置阈值thresholds。 如果模型预测结果为分类标签1的估计概率>thresholds,则预测为1,否则为0。高阈值是鼓励模型更频繁地预测0,反之则预测为1。 |
自动调参设置 | 系统默认的各项参数值范围。 | 必须结合“启用自动调参”功能使用。系统将对设置指定或范围内的参数值循环调参,匹配出最优的组合。详情请参考 自动调参设置 。 启用自动调参: 勾选该项,则系统自动调参数,不需要用户手工设置参数。 |
自动调参设置
系统将对设置指定或范围内的参数值循环调参,匹配出最优的组合。
自动调参的方式分为两种:
- 指定值调参:指定一个固定的值进行自动调参。
- 范围调参:在指定的范围内进行自动调参。
设置项说明如下:
设置项 | 说明 | ||
---|---|---|---|
拆分比例 | 将选择的数据拆分为两部分,一部分部分用于模型的评估,另一部分数据用于训练模型。 | ||
评估标准 | 用于选择数据的评估指标,包括:f1、precision、recall、accuracy。 | ||
参数 | 自动调参的参数项。 | ||
指定值调参 | 指定值 | 指定一个固定的值进行自动调参。需要先勾选“是否使用指定值”才能配置。 | |
是否使用指定值 | 控制是否使用使用指定值进行调参。 | ||
范围调参 | 范围 | 设置自动调参参数的范围。 若运行速度比较慢,可将参数范围调小一点。 | |
步数 | 进行范围调参时,在设置的范围内生成多少个参数值。 示例: 1)范围为[3,5],步数为3时,生成的参数值:3, 4, 5 2)范围为[40,100],步数为4时,生成的参数值:40, 60, 80, 100 |
右键单击评估节点,选择查看分析结果,如下图:
F1分数决定模型效果的程度,F1值越大,说明模型预测的效果最佳。这里f1值为0.82。说明该模型效果还是不错的。效果不理想的化还可以继续调优模型。