Python节点主要用于机器学习的DBSACN算法和自定义模块的Python脚本扩展。如果没有用到这两个功能模块,可以不用部署python节点。
文档环境
单机部署数据挖掘组件环境如下:
服务器IP | 主机名 | 组件实例 | 部署目录 |
---|---|---|---|
10.10.204.248 | 10-10-204-248 | 数据挖掘 | /data |
10.10.204.249 | 10-10-204-249 | Spark,Hadoop | /data |
10.10.204.250 | 10-10-204-250 | Python | /data |
1. 系统环境准备
温馨提示
配置防火墙,selinux相关操作,需要管理员权限。
1.1. 防火墙配置
为了便于安装,建议在安装前关闭防火墙。使用过程中,为了系统安全可以选择启用防火墙,但必须启用服务相关端口。
1.1.1. 关闭防火墙
临时关闭防火墙(立即生效)
systemctl stop firewalld
永久关闭防火墙(重启后生效)
systemctl disable firewalld
查看防火墙状态
systemctl status firewalld
1.1.2. 开启防火墙
相关服务及端口对照表:
服务名 | 需要开放端口 |
---|---|
Python | 8980 |
如果确实需要打开防火墙安装,需要给防火墙放开以下需要使用到的端口
开启端口:8980
firewall-cmd --zone=public --add-port=8980/tcp --permanent
配置完以后重新加载firewalld,使配置生效
firewall-cmd --reload
查看防火墙的配置信息
firewall-cmd --list-all
1.1.3. 关闭selinux
临时关闭selinux,立即生效,不需要重启服务器。
setenforce 0
永久关闭selinux,修改完配置后需要重启服务器才能生效
sed -i 's/=enforcing/=disabled/g' /etc/selinux/config
2. Python计算机点单机部署
2.1. 安装前配置
温馨提示
配置本地yum源,主机名映射,需要管理员权限。
① 配置本地yum源,参考文档:https://jingyan.baidu.com/article/fdbd4277a508e8b89e3f4807.html
注意事项
Centos7.4 以上,可不设置本地yum源。
② 配置主机名映射
将数据挖掘组件中的服务器主机名映射到hosts文件中
vi /etc/hosts
文件末尾添(根据实际环境信息设置):
10.10.204.248 10-10-204-248 10.10.204.249 10-10-204-249 10.10.204.250 10-10-204-250
③ 安装javva环境
解压jdk到指定目录:
tar -zxvf jdk-8u181-linux-x64.tar.gz -C /data
添加环境变量
vi /etc/profile
在文件末尾添加下面内容:
export JAVA_HOME=/data/jdk1.8.0_181 export JAVA_BIN=$JAVA_HOME/bin export CLASSPATH=:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar export PATH=$PATH:$JAVA_BIN
让配置生效
source /etc/profile
验证安装
java -version
2.2. 安装Python主程序
2.2.1. 安装Python
1、上传安装包到服务器
2、解压安装包至指定目录
tar -zxvf python-3.9.13.tar.gz -C /usr/local/
3、 配置环境变量
vi /etc/profile
在末尾添加以下内容:
export PATH=/usr/local/python-3.9.13/bin:$PATH
使配置生效,查看python版本
source /etc/profile
2.2.2. 验证Python程序
1、查看python版本
python --version
2、查看pip版本验证
pip -V
3、pip查看安装插件列表
pip list
2.3. 部署数据挖掘引擎包
上传安装包到服务器,并解压到指定目录
tar -zxvf SmartbiMiningEngine-V10.0.64186.21183.tar.gz -C /data
注意事项
数据挖掘引擎包版本需要与Smartbi版本一致。
2.4. 创建Python执行用户
温馨提示
1、创建用户需要使用管理员权限,如果已经是普通用户执行部署操作,可以不用再创建用户。
创建用户组、用户并设置密码
groupadd mining #创建mining组 useradd -g mining mining-ag #创建启动用户(mining-ag)并指定用户组为mining passwd mining-ag #设置mining-ag用户密
给引擎安装目录附权限(为了使用mining-ag用户启动执行代理程序时候,有权限创建agent-data跟agent-logs目录)
chgrp mining -R /data/smartbi-mining-engine-bin chmod 775 -R /data/smartbi-mining-engine-bin
2.5. 启动Python执行代理
① 浏览器访问Smartbi,打开系统运维–数据挖掘配置–引擎设置,复制Python代理器启动命令
注意事项
复制Python代理器启动命令前,请确认数据挖掘引擎能正常测试连接成功
② 登录到部署Python节点机器,并切换到mining-ag用户
注意事项
为了避免出现安全问题,一定要切换到mining-ag用户去启动执行代理服务,不要使用root用户安装或带有sudo权限的用户来启动执行代理服务,因为执行代理服务是会去执行在界面上定义的python脚本,如果执行用户权限过大,会存在安全问题。
su - mining-ag
进入引擎启动目录
cd /data/smartbi-mining-engine-bin/engine/sbin
把拷贝命令粘贴,并执行,例如:
./agent-daemon.sh start --master http://10-10-204-248:8899 --env python
若有换包更新数据挖掘版本,需要重启python代理
启动完成后可参考: 测试数据挖掘及其组件 运行数据挖掘实验
③停止python节点
登录到部署Python节点机器,并切换到mining-ag用户
注意事项
为了避免出现安全问题,一定要切换到mining-ag用户去启动执行代理服务,不要使用root用户安装或带有sudo权限的用户来启动执行代理服务,因为执行代理服务是会去执行在界面上定义的python脚本,如果执行用户权限过大,会存在安全问题。
su - mining-ag
进入引擎启动目录
cd /data/smartbi-mining-engine-bin/engine/sbin
把拷贝命令粘贴,并执行,例如:
./agent-daemon.sh stop
2.6. 运维操作
① 更新Python数据挖掘引擎包
Smartbi更新war包版本时,Python执行节点需要同步更新对应版本的数据挖掘引擎。